Regression with Gaussian Mixture ModelsApplied to Track Fitting
نویسندگان
چکیده
منابع مشابه
Robust fitting of mixture regression models
The existing methods for fitting mixture regression models assume a normal distribution for error and then estimate the regression parameters by the maximum likelihood estimate (MLE). In this article, we demonstrate that the MLE, like the least squares estimate, is sensitive to outliers and heavy-tailed error distributions. We propose a robust estimation procedure and an EM-type algorithm to es...
متن کاملPEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION
Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...
متن کاملGibbs sampling for fitting finite and infinite Gaussian mixture models
This document gives a high-level summary of the necessary details for implementing collapsed Gibbs sampling for fitting Gaussian mixture models (GMMs) following a Bayesian approach. The document structure is as follows. After notation and reference sections (Sections 2 and 3), the case for sampling the parameters of a finite Gaussian mixture model is described in Section 4. This is then extende...
متن کاملBayesian classification of vegetation types with Gaussian mixture density fitting to indicator values
Question: Is it possible to mathematically classify relevés into vegetation types on the basis of their average indicator values, including the uncertainty of the classification? Location: The Netherlands. Method: A large relevé database was used to develop a method for predicting vegetation types based on indicator values. First, each relevé was classified into a phytosociological association ...
متن کاملRobust mixture regression model fitting by Laplace distribution
A robust estimation procedure for mixture linear regression models is proposed by assuming that the error terms follow a Laplace distribution. The estimation procedure is implemented by an EM algorithm based on the fact that the Laplace distribution is a scale mixture of a normal distribution. Finite sample performance of the proposed algorithm is evaluated by numerical simulation studies. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Instruments
سال: 2020
ISSN: 2410-390X
DOI: 10.3390/instruments4030025